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Despite recent advances in monitoring nucleation from a vapor at close-to-molecular reso-

lution, the identity of the critical cluster, forming the bottleneck for the nucleation process,

remains elusive. During past twenty years, the first nucleation theorem has been often

used to extract the size of the critical cluster from nucleation rate measurements. However,

derivations of the first nucleation theorem invoke certain questionable assumptions that

may fail, e.g., in the case of atmospheric new particle formation, including absence of sub-

critical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we

extend the kinetic derivation of the first nucleation theorem to give a general framework to

include such processes, yielding sum rules connecting the size dependent particle forma-

tion and loss rates to the corresponding loss-free nucleation rate and the apparent critical

size from a naı̈ve application of the first nucleation theorem that neglects them.
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First-order phase transformations via nucleation are encountered in a variety of natural and

technological processes. The vapor-phase synthesis of nanoparticles with prescribed properties for

subsequent assembly into novel nanostructures is one application.1 In the Earth’s atmosphere, the

formation of new particles and their growth into cloud condensation nuclei give rise to feedback

processes that modulate cloudiness, precipitation, and climate.2,3 The reliable modeling of such

processes requires going beyond classical phenomenology towards a molecular-level description.

To this end the development of so-called nucleation theorems has been particularly effective,4

however, in their current form, these theorems rely on restrictive assumptions that limit their use

mainly to interpretation of carefully controlled laboratory measurements. Here we derive extended

forms of the first nucleation theorem, and related sum rules,to include loss of molecular clusters

from a prescribed nucleation and growth sequence. Loss can be due to scavenging by background

aerosol and/or container walls, or removal from the nucleation volume by diffusion or phoretic

forces. We also include the possibility that clusters, especially ones of sub-critical size, are lost

due to their serving as heterogeneous condensation sites ina way that opens up new off-sequence

channels for new particle formation. These results have direct consequences for the interpretation

of atmospherically relevant field and laboratory measurements.

As demonstrated by Bowles et al.,5 these theorems—with emphasis on the first nucleation

theorem,
(

∂Wg∗

∂µ

)

V,T

= −∆g∗ + 1 (1)

—are a direct consequence of the law of mass action for nucleation from an ideal vapor.Wg∗ is

the work needed to form a cluster of critical size,∆g∗ is the excess number of molecules in the

nucleus over that present in the same volume of parent phase andµ is the chemical potential of nu-

cleating species present in the parent phase. Under typicallaboratory and atmospheric conditions

∆g∗ can be approximated by the thermodynamic critical sizeg∗, which is given in the classical

nucleation theory by the minimum of the constrained equilibrium distribution ofg-mers (clusters

containingg monomeric units of condensed phase),ng = n1e
−Wg/kT , wheren1 is the number

concentration of monomers. The connection with nucleationrate measurements is achieved by

expressing the nucleation rate in Arrhenius-form,J = Ke−Wg∗/kT , where the prefactorK should

take into account the law of mass action. These relations, involving the reversible work of cluster

formation, can be described asthermodynamic nucleation theorems. Alternatively,kinetic nucle-

ation theorems can be derived directly from the master equation approach tonucleation kinetics
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using the law of mass action and detailed balance.6,7

A detailed kinetic treatment of homogeneous nucleation waspresented by Farkas,8 following

Szilárd’s suggestion that clusters grow or decay by absorbing or evaporating a monomer. This

simplification does not usually compromise the accuracy of the theory, as in a typical case of

vapor–liquid nucleation the collisions with monomers dominate the total number of collisions

encountered byg-mers. Lettingfg denote the actual population ofg-mers, the net forward flux

between adjacent sizes, sayg andg + 1, is given as

Jg = βgf1fg − αg+1fg+1 (2)

whereβg is the addition rate of a monomer to ag-mer, andαg is the evaporation rate of a

monomer from ag-mer. The detailed balance condition,βgngf1 = αg+1ng+1, wheref1 is the

actual monomer concentration, which we hold as constant equal to n1, is used to eliminate the

evaporation rate:

Jg = βgf1ng

(

fg
ng

−
fg+1

ng+1

)

≡ pg (ug − ug+1) . (3)

The new variablespg andug are introduced for subsequent use. Dividing both sides of Eq. (3) by

pg and summing forg = 1, . . . , G, whereG is a sufficiently large integer with boundary conditions

uG = 0 andu1 = 1, and noticing thatJg is constant (J) for all g when no losses are present, we

arrive at the Becker–Döring9 result

J =

(

G−1
∑

g=1

1

pg

)−1

. (4)

The remarkable fact of this well-known result is that it depends only onβg—determined from

kinetic theory—andng.

For an ideal vapor, incorporating the law of mass actionµg = gµ, or ng ∝ ng
1, the following

result is obvious:
[

∂ ln(n1ng)

∂ lnn1

]

T

= g + 1. (5)

As defined here,βg does not depend onn1 [see Eq. (3)] and substitution of this last result into

Eq. (4), withpg = βgn1ng, gives the kinetic version of the first nucleation theorem,6,7

(

∂ ln J

∂ lnn1

)

T

= ḡ + 1, (6)

where the kinetic critical size is defined as an expectation valueḡ =
∑G−1

g=1
P (g)g with respect to
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FIG. 1. A schematic description of the Szilárd process withlosses.

the normalized1/pg distribution

P (g) =
1

pg

(

G−1
∑

g=1

1

pg

)−1

. (7)

Although the first nucleation theorem has been tested well incloud chamber studies of single-

component and binary nucleation,10 recent atmospherically relevant field11 and laboratory12–14

studies of sulfuric acid driven nucleation have produced inconsistent results; suggesting, for ex-

ample, that new particle formation may occur via activated (with barrier) or purely kinetic (with-

out barrier) mechanisms under nearly identical experimental conditions. Several possible rea-

sons for this behavior have been suggested, including problems related to the experimental de-

tection of freshly nucleated clusters12 and the influence of other trace vapors13–15 on the new par-

ticle formation rate.16 Recent simulation studies have underlined the effect of wall and coagula-

tion losses—and alternative growth paths including addition of clusters containing several H2SO4

molecules17—on the interpretation of the first nucleation theorem,18,19 an effect that has not been

yet fully accounted for when applying the first nucleation theorem to laboratory or atmospheric

measurements.3

To extend the kinetic nucleation theorem for cases with losses we apply the discrete model of

McGraw and Marlow,20 which is more appropriate at small cluster sizes than corresponding con-

tinuum presentations21 and allows cluster grow by condensation, evaporation, and size-dependent

cluster losses. Net fluxes betweeng-mer and(g+1)-mers are still given by Eq. (3), but eachg-mer

is additionally scavenged at rateLg. The assumption of linear dependence ofLg onfg, Lg = qgfg,

whereqg is the rate coefficient that can apply to each of the loss mechanisms mentioned above, but

not to removal by self-coagulation or production of smallerclusters through fragmentation, allows

derivation of a closed-form solutions for the relative sensitivities of ratesJg with respect ton1.22

Prior to consideration of more complex systems, it is worthwhile comparing the thermodynamic

and kinetic approaches underlying derivation of Eqs. (1) and (6), respectively. Both approaches are

extendable to multicomponent nucleation with the kinetic approach having advantage of working
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with a directly measurable quantity, nucleation rate. The essential difference is that thermody-

namic nucleation theorems focus on extrema of the free-energy surface whereas the kinetic ap-

proaches work with rate coefficients and the (possibly multiple) pathways over which nucleation

can occur (cf. Ref. 23). From the kinetic viewpoint, the overall rate sensitivity for a complex

system can often be expressed simply as a flux-weighted average of sensitivities over dominant

paths.7

Using now the model described in Fig. 1, we derive two sum rules for the nucleation rates:

First, from Eq. (3) we get

G−1
∑

g=1

Jg

pg
=

G−1
∑

g=1

(ug − ug+1) = u1 − uG = 1. (8)

Multiplying both sides byJ =
(

∑G−1

g=1
1/pg

)−1

from Eq. (4) yields the first sum rule:

G−1
∑

g=1

P (g)Jg = J̄g = J , (9)

that is, at steady state theP (g)-averaged transition rate equals the homogeneous nucleation rate

without losses. As the fluxes in Fig. 1 are conserved, at each sizeg,

Jg = Jg−1 − Lg. (10)

Equations (9) and (10) imply that the net forward rates at small sizes are larger than the corre-

sponding loss-free rates, and smaller at large sizes.24 The addition of cluster loss tends to promote

the assumption of steady state used in the derivation of Eqs.(9) and (10). This is because cluster

losses actually drive the system towards steady state faster than would otherwise happen without

the loss.25 Additionally, it has been shown that background aerosol, which increases scavenging

loss, widens the stability range of steady-state conditions in dynamical systems involving coupled

nucleation and growth.26

Taking the derivatives of both sides of Eq. (9), completing the logarithms of differentials, and

applying Eqs. (5)–(7) to evaluate the derivatives ofpg, J , andP (g) we get after some algebra the

second sum rule:
G−1
∑

g=1

[

(

∂ ln Jg

∂ lnn1

)

T,{qg}

− g

]

P (g)Jg = J . (11)

This sum rule involving both rates and rate sensitivities can be seen as a generalization of the

kinetic first nucleation theorem, as Eq. (11) reduces to Eq. (6) for the loss-free case withJ = Jg.
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FIG. 2. Normalized formation rates of ag-mer as a function ofg andA atS = 10. Dashed line denotes

Jg = J . Inset shows in linear scale how in the case of large lossesJg ≤ J for largeg.

It should be noted that Eqs. (9) and (11) do not depend on the nature of losses as long as self-

coagulation and fragmentation of clusters can be neglected.

To illustrate the new sum rules we perform calculations for amodel condensable vapor—a

proxy to ethanesulfonic acid that facilitates comparison with previous work20,21,27–29. Table SIII

lists properties of the model compound.22 Losses of clusters are taken to be due to Brownian

coagulation with background aerosol with specific surface area densityA varying from particle-

free conditions (A = 0 m−1) to a high value ofA typical of a severe duststorm; an intermediate

valueA = 0.072 m−1, which gives a loss rate comparable to the diffusion loss from the nucleation

zone in a thermal diffusion cloud chamber,27 was used in earlier work.20 Fuchs surface areas30 are

implied throughout. Results are shown in Figs. 2 and 3. Figure 2 shows that the net growth rates

can be considerably larger with loss than without for clusters of sub-critical size. This behavior

can be rationalized by the fact that the loss channel is more important for clusters that are, in

effect, trapped by the thermodynamic barrier and thus have more time to experience loss. Super-

critical clusters are able to grow much faster and thus do notget loss that efficiently at any given

size. Similar behavior is seen in continuous models for nucleation with loss.28,29 As can be seen

by comparing Figs. 2 and 3(a), qualitatively similar behavior is observed whether the loss rate

is increased by increasingA at fixedS (Fig. 2) or the saturation ratio is decreased at fixedA

[Fig. 3(a)]. This similarity is related to the importance ofa non-dimensional loss parameter,L =

A/(A1f1), whereA1 is the surface area of monomer, introduced independently inslightly different

contexts in Refs. 20 and 30. In what follows, only the effect of a varying saturation ratio at fixed

background aerosol surface area is considered.
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FIG. 3. (a) Normalized formation rates of ag-mer as a function ofg at different saturation ratios with a

fixedA = 0.0072 m−1. (b) Apparent results̃g of naı̈vely applied first nucleation theorem as a function of

cluster sizeg, note the linear regime for smallg. Open and filled symbols refer to loss-free and lossy cases,

respectively. (c, d) DistributionsP (g)Jg/J and
[

(∂ ln Jg/∂ lnn1)T,{qg} − g
]

P (g)Jg/J (markers and

values at left axes) and their cumulative sums (for lossy cases only; histograms and values at right axes). In

all panels, yellow vertical lines indicate the locations ofthe loss-free critical sizes̄g from Eq. (6).

Figure 3(b) shows size dependent sensitivities ofln Jg with respect tolnn1 at constantT [term

in parenthesis in Eq. (11)] as a function ofg (filled symbols). The result, if naı̈vely interpreted,

would indicate an apparent critical size (g̃) that can differ appreciably from the kinetic critical

size determined in the loss-free case (ḡ), which, in turn, is very close to the actual number of

molecules in the critical nucleus,g∗, of homogeneous nucleation theory. For the smallest clusters,

the apparent critical size depends linearly from the size atwhich the rate is determined, i.e.g̃ ≈

g.22 For clusters larger than̄g, slight overestimates are obtained. Thus, it is possible toobtain

estimates̃g biased into either direction, if the effect of loss is neglected. The quantitative deviation

depends in a complicated manner onpg andqg [Eq. (S6)].
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An interesting feature that is apparent from Figs. 2 and 3 is that the first nucleation theorem

seems to approximately hold if applied to the rateJḡ determined at the loss-free kinetic critical

sizeḡ. However, it is premature to say whether this behavior is of general nature, or a consequence

of the model system; the effect of losses on the gradientug − ug+1 is mainly important at sizes

smaller than̄g [see, e.g., Fig. S1(b)]. It would also be possible to define a kinetic critical size for

the lossy case,̂g, by averagingg with respect to the generalized distributionP (g)Jg/J : in such

case the second sum rule could be written as22

ĝ + 1 =

G−1
∑

g=1

JgP (g)

J

(

∂ ln Jg

∂ lnn1

)

T,{qg}

. (12)

As can be interpreted from Fig. 3(c), at least for our model casesĝ is well approximated bȳg.

However, there is no unambiguous physical interpretation of ĝ, as there is no single rate limiting

step corresponding the bottleneck for the observed nucleation rate, though the thermodynamic

critical sizeg∗ appears in the theoretical estimates for the transient timescale of nucleation also in

such case.25,31

Figures 3(c) and (d) demonstrate the first and second sum rules, respectively. In Panel (c),

the distributionP (g)Jg/J , generalizing Eq. (7), is given together with its cumulative sum. These

cumulative sums are given for the cases with loss only: underloss-free conditions it is clear that the

cumulative distributions approach unity as the distributionP (g) is normalized, in the case of Panel

(c), and the second sum rule, demonstrated in Panel (d), reduces to Eq. (6). These figures show the

effect of applying the first nucleation theorem to the formation rates of clusters of different size,

and illustrate the validity of Eqs. (9) and (11) for a realization of the flux network model illustrated

in Fig. 1.

In a recent simulation study with qualitatively similar findings, Ehrhart and Curtius18 used the

SAWNUC sulfuric acid–water nucleation32 model to study sensitivity of nucleation rate to changes

in vapor phase sulfuric acid concentration as a function of cluster size and scavenging rate. Similar

behavior was also seen in simulations of the binary sulfuricacid–ammonia system using another

modeling approach (ACDC).19 However, for an even more nonideal system of sulfuric acid and

dimethylamine, a more complicated behavior was observed,19 which is likely due to kinetic effects

and/or breakdown of the Szilárd mechanism.

Yet another loss process that can be approximately cast intolinear form is the heterogeneous

nucleation on the small sub-critical clusters in the presence of, e.g., an organic vapor.33 This is

essentially a new channel for growth that opens up, thereby effectively removing clusters from the

8



growth sequence illustrated in Fig. 1. Conversely, collisions of sub-critical clusters with existing

ambient nanoparticles, for which we can also consider single large organic molecules,34 can also

result in crossing of the heterogeneous nucleation barrier. Earlier applications of the (kinetic) first

nucleation theorem on such cases have produced meaninglessestimates for̄g.17,35 However, when

considering some fraction of each loss rateLg actually resulting in a channel contributing to the

observed new particle formation, an extension of the first kinetic nucleation theorem can be derived

[Eq. (S21)]. In this case the resulting apparent critical size g̃ is smaller than the correspondingḡ,

being either characteristic size for the heterogeneous nucleus, if only one path is available, or

a flux-weighted average over possible homo- and heterogeneous pathways.36 This mechanism,

together with the observation of the linear estimate for theapparent critical size at small sizes, also

casts some doubts on the interpretation of measurements from particle size magnifiers when used

to detect critical clusters at low nucleation rate (e.g. Ref. 12). In reality the working fluid may be

condensing on clusters of sub-critical size leading to too small an estimate of̄g.

As demonstrated by our results—as well as recent simulationstudies18,19—a naı̈ve application

of the first nucleation theorem when sub-critical cluster losses are expected can lead to seriously

biased estimates on the critical cluster size, and consequently on the mechanism behind the new

particle formation, even if the other known deficiencies19 of the analysis have been appropriately

considered. The fundamental concepts behind nucleation theorems, like mass action and detailed

balance, still apply but the theorems themselves need correction to yield physically meaningful

results. Here we have provided sum rules that can be used to identify and/or correct these biases.

Besides applications to analysis of field and laboratory measurements of new particle formation,

derived sum rules can also find applications in control of chemical vapor deposition and vapor-

phase synthesis of nanomaterials in inhomogeneous medium,29 and also in a broader context to

other types of nucleation processes that can be described using the Szilárd model.
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Spracklen, Y. Stotzhkov, F. Stratmann, A. Tomé, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen,

A. Vrtala, P. E. Wagner, E. Weingertner, H. Wex, D. Wimmer, K.S. Carslaw, J. Curtius, N.

M. Donahue, J. Kirkby, M. Kulmala, D. R. Worsnop, and U. Baltensperger, Science344, 717

(2014).
16It should be noted that the interpretations from carefully controlled laboratory measurements

(e.g. Refs. 12–15) are often done at much higher H2SO4 concentrations than observed in the

atmosphere.
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